5.3 沉降计算


5.3.1 复合地基的沉降由垫层压缩变形量、加固区复合土层压缩变形量(s1)和加固区下卧土层压缩变形量(s2)组成。当垫层压缩变形量小,且在施工期已基本完成时,可忽略不计。复合地基沉降可按下式计算:

s=s1+s2      (5.3.1)

式中:s1——复合地基加固区复合土层压缩变形量(mm);
     s2——加固区下卧土层压缩变形量(mm)。
5.3.2 复合地基加固区复合土层压缩变形量(s1)宜根据复合地基类型分别按下列公式计算:
    1 散体材料桩复合地基和柔性桩复合地基,可按下列公式计算:


E
spi=mEpi+(1-m)Esi     (5.3.2-2)

式中:Δpi——第i层土的平均附加应力增量(kPa);
     li——第i层土的厚度(mm);
     m——复合地基置换率;
     ψs1——复合地基加固区复合土层压缩变形量计算经验系数,根据复合地基类型、地区实测资料及经验确定;
     Espi——第i层复合土体的压缩模量(kPa);
     Epi——第i层桩体压缩模量(kPa);
     Esi——第i层桩间土压缩模量(kPa),宜按当地经验取值,如无经验,可取天然地基压缩模量。
    2 刚性桩复合地基可按下式计算:

式中:Q——刚性桩桩顶附加荷载(kN);
     l——刚性桩桩长(mm);
     Ep——桩体压缩模量(kPa);
     Ap——单桩截面积(m2);
     ψp——刚性桩桩体压缩经验系数,宜综合考虑刚性桩长细比、桩端刺入量,根据地区实测资料及经验确定。

5.3.3 复合地基加固区下卧土层压缩变形量(s2),可按下式计算:

式中:Δpi——第i层土的平均附加应力增量(kPa);
     li——第i层土的厚度(mm);
     Esi——基础底面下第i层土的压缩模量(kPa);
     ψs2——复合地基加固区下卧土层压缩变形量计算经验系数,根据复合地基类型地区实测资料及经验确定。
5.3.4 作用在复合地基加固区下卧层顶部的附加压力宜根据复合地基类型采用不同方法。对散体材料桩复合地基宜采用压力扩散法计算,对刚性桩复合地基宜采用等效实体法计算,对柔性桩复合地基,可根据桩土模量比大小分别采用等效实体法或压力扩散法计算。
5.3.5 当采用长-短桩复合地基时,复合地基的沉降应由垫层压缩量、加固区复合土层压缩变形量(s1)和加固区下卧土层压缩变形量(s2)组成。加固区复合土层压缩变形量(s1)应由短桩范围内复合土层压缩变形量(s11)和短桩以下只有长桩部分复合土层压缩变形量(s12)组成。垫层压缩量小,且在施工期已基本完成时,可忽略不计。长-短桩复合地基的沉降宜按下式计算:

s=s11+s12+s2       (5.3.5)

5.3.6 长-短复合地基中短桩范围内复合土层压缩变形量(s11)和短桩以下只有长桩部分复合土层压缩变形量(s12)可按本规范公式(5.3.2-1)计算,加固区下卧土层压缩变形量(s2)可按本规范公式(5.3.3)计算。短桩范围内第i层复合土体的压缩模量(Espi),可按下式计算:

Espi=m1Ep1i+m2Ep2i+(1-m1-m2)Esi      (5.3.6)

式中:Ep1i——第i层长桩桩体压缩模量(kPa);
     Ep2i——第i层短桩桩体压缩模量(kPa);
     m1——长桩的面积置换率;
     m2——短桩的面积置换率;
     Esi——第i层桩间土压缩模量(kPa),宜按当地经验取值,无经验时,可取天然地基压缩模量。


 

条文说明
 

5.3 沉降计算

5.3.4 当复合地基加固区下卧土层压缩性较大时,复合地基沉降主要来自加固区下卧土层的压缩。复合地基加固区下卧土层压缩变形量(s2)计算中,作用在复合地基加固区下卧层顶部的附加压力较难计算。作用在复合地基加固区下卧层顶部的附加压力宜根据复合地基类型分别按下列公式计算:
    对散体材料桩复合地基宜采用压力扩散法(见图6),可按下式计算:

N=LBp0     (2)

       (3)

图6 压力扩散法计算

图6 压力扩散法计算
1—p0;2—θ;3—pz

    对刚性桩复合地基宜采用等效实体法(见图7),可按下式计算:

    (4)

式中:pz——荷载效应标准组合时,软弱下卧层顶面处的附加压力值(kPa);
     L——矩形基础底边的长度(m);
     B——矩形基础或条形基础底边的宽度(m);
     h——复合地基加固区的深度(m);
     a0——基础长度方向桩的外包尺寸(m);
     b0——基础宽度方向桩的外包尺寸(m);
     p0——复合地基加固区顶部的附加压力(kPa);
     θ——压力扩散角(°);
     f——复合地基加固区桩侧摩阻力(kPa)。

图7 等效实体法计算

图7 等效实体法计算
1—p0;2—pz

    对柔性桩复合地基,可视桩土模量比采用压力扩散法或等效实体法计算。
    采用压力扩散法计算较困难的是压力扩散角的合理选用。研究表明:虽然公式(3)同双层地基中压力扩散法计算第二层土上的附加应力计算式形式相同,但要重视复合地基中压力扩散角与双层地基中压力扩散角数值是不同的。
    杨慧(2000)采用有限元法分析比较了复合地基和双层地基中压力扩散情况。在分析中将作用在复合地基加固区下卧层顶部和双层地基两层土界面上荷载作用面对应范围内的竖向应力取平均值,并依此平均值计算压力扩散角。计算中复合地基加固区深度和双层地基上一层厚度相同,取h=10m。复合地基加固区下卧层土体和双层地基下一层土体模量相同,取E2=5MPa,复合地基加固体和双层地基上一层土体模量相同,为E1。首先讨论压力扩散角(θ)随h/B的变化情况,B为基础宽度。当E1/E2=1.0时,此时复合地基和双层地基均蜕化成均质地基。复合地基和双层地基压力扩散角随h/B的变化曲线重合(图8)。

图8 扩散角(θ)与h/B变化曲线(h=10m,E1/E2=1.0)

图8 扩散角(θ)与h/B变化曲线(h=10m,E1/E2=1.0)

    随着E1/E2值的增大,复合地基和双层地基压力扩散角随h/B的变化曲线差距增大(图9),双层地基扩散角大于复合地基的扩散角。

图9 扩散角(θ)与h/B变化曲线(h=10m,E1/E2=1.4)

图9 扩散角(θ)与h/B变化曲线(h=10m,E1/E2=1.4)

    取h=10m,E2=5MPa,h/B=1.0,分析扩散角随模量比(E1/E2)变化关系(图10),发现,双层地基中压力扩散角随着模量比的增大而迅速增大,复合地基的扩散角随着模量比的增大稍有减小。

图10 扩散角(θ)与模量比(E1/E2)关系曲线

图10 扩散角(θ)与模量比(E1/E2)关系曲线

 

    根据前面分析,在荷载作用下双层地基与复合地基中附加应力场分布及变化规律有着较大的差别,将复合地基认为双层地基,低估了深层土层中的附加应力值,在工程上是偏不安全的。采用压力扩散法计算作用在加固区下卧土层上的附加应力时,需要重视压力扩散角的合理选用。
    研究表明:采用等效实体法计算作用在加固区下卧土层上的附加应力,误差主要来自侧摩阻力(f)的合理选用。当桩土相对刚度较大时,选用误差可能较小。当桩土相对刚度较小时,侧摩阻力(f)变化范围很大,f选值比较困难,很难合理估计其平均值。事实上,将加固体作为一分离体,两侧面上剪应力分布是非常复杂的。采用侧摩阻力的概念是一种近似,应用等效实体法计算作用在加固区下卧土层上的附加应力时,需要重视f的合理取值。
    当桩土相对刚度较大时,采用等效实体法计算作用在加固区下卧土层上的附加应力时误差可能较小,而当桩土相对刚度较小时,采用压力扩散法计算作用在加固区下卧土层上的附加应力时误差可能较小。建议采用上述两种方法进行计算,然后通过比较分析,并结合工程经验,作出判断。

目录导航